首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4021篇
  免费   259篇
  国内免费   479篇
化学   51篇
力学   68篇
综合类   56篇
数学   4085篇
物理学   499篇
  2024年   3篇
  2023年   51篇
  2022年   23篇
  2021年   44篇
  2020年   82篇
  2019年   107篇
  2018年   114篇
  2017年   101篇
  2016年   120篇
  2015年   98篇
  2014年   191篇
  2013年   360篇
  2012年   123篇
  2011年   210篇
  2010年   158篇
  2009年   289篇
  2008年   329篇
  2007年   272篇
  2006年   253篇
  2005年   237篇
  2004年   182篇
  2003年   197篇
  2002年   194篇
  2001年   137篇
  2000年   132篇
  1999年   143篇
  1998年   121篇
  1997年   125篇
  1996年   65篇
  1995年   45篇
  1994年   36篇
  1993年   21篇
  1992年   11篇
  1991年   14篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1985年   14篇
  1984年   9篇
  1983年   3篇
  1982年   18篇
  1981年   17篇
  1980年   14篇
  1979年   16篇
  1978年   13篇
  1977年   10篇
  1976年   6篇
  1970年   2篇
排序方式: 共有4759条查询结果,搜索用时 29 毫秒
1.
2.
In order to describe the dynamics of the tJ model, two different families of first-order Lagrangians in terms of the generators of the Hubbard algebra are found. Such families correspond to different dynamical second-class constrained systems. The quantization is carried out by using the path-integral formalism. In this context the introduction of proper ghost fields is needed to render the model renormalizable. In each case the standard Feynman diagrammatics is obtained and the renormalized physical quantities are computed and analyzed. In the first case a nonperturbative large-N expansion is considered with the purpose of studying the generalized Hubbard model describing N-fold-degenerate correlated bands. In this case the 1/N correction to the renormalized boson propagator is computed. In the second case the perturbative Lagrangian formalism is developed and it is shown how propagators and vertices can be renormalized to each order. In particular, the renormalized ferromagnetic magnon propagator coming from our formalism is studied in details. As an example the thermal softening of the magnon frequency is computed. The antiferromagnetic case is also analyzed, and the results are confronted with previous one obtained by means of the spin-polaron theories.  相似文献   
3.
SPECTRUM-PRESERVING ELEMENTARY OPERATORS ON B(X)   总被引:4,自引:0,他引:4  
1.IntroductionLetXbeaninfinitedimensionalcomplexBanachspaceandB(X)theBanachalgebraofallboundedlinearoperatorsonX.ForTEB(X),a(T),asusual,willdenotethespectrumofT.Let4bealinearmapfromB(X)intoitself.4isspectrum-preservingifa(di(T))=a(T)forallTEB(X);4isspectrum-compressingifa(4(T))ga(T)forallTEB(X).Itisclearthatif4isunital(i.e.,ac(I)=I),thenacisspectrum-preserving(spectrum-compressing)ifandonlyif4preservesinvertibilityinbothdirections(preservesinvertibility),i.e.,4(T)isinvertibleifando…  相似文献   
4.
We study spectral properties of discrete Schrödinger operators with potentials obtained via dimerization of a class of aperiodic sequences. It is shown that both the nature of the autocorrelation measure of a regular sequence and the presence of generic (full probability) singular continuous spectrum in the hull of primitive and palindromic (four block substitution) potentials are robust under dimerization. Generic results also hold for circle potentials. We illustrate these results with numerical studies of the quantum mean square displacement as a function of time. The numerical techniques provide a very fast algorithm for the time evolution of wave packets.  相似文献   
5.
In this paper we consider a wavelet algorithm for the piecewise constant collocation method applied to the boundary element solution of a first kind integral equation arising in acoustic scattering. The conventional stiffness matrix is transformed into the corresponding matrix with respect to wavelet bases, and it is approximated by a compressed matrix. Finally, the stiffness matrix is multiplied by diagonal preconditioners such that the resulting matrix of the system of linear equations is well conditioned and sparse. Using this matrix, the boundary integral equation can be solved effectively.  相似文献   
6.
Well-Posedness by Perturbations of Variational Problems   总被引:3,自引:0,他引:3  
In this paper, we consider the extension of the notion of well-posedness by perturbations, introduced by Zolezzi for optimization problems, to other related variational problems like inclusion problems and fixed-point problems. Then, we study the conditions under which there is equivalence of the well-posedness in the above sense between different problems. Relations with the so-called diagonal well-posedness are also given. Finally, an application to staircase iteration methods is presented.  相似文献   
7.
8.
In this paper we study the Hankel convolution operators on the space of even and entire functions and on Schwartz distribution spaces. We characterize the Hankel convolution operators as those ones that commute with Hankel translations and with a Bessel operator. Also we prove that the Hankel convolution operators are hypercyclic and chaotic on the spaces under consideration.  相似文献   
9.
Given an oblique projector P on a Hilbert space, i.e., an operator satisfying P 2=P, which is neither null nor the identity, it holds that ||P|| = ||IP||. This useful equality, while not widely-known, has been proven repeatedly in the literature. Many published proofs are reviewed, and simpler ones are presented.  相似文献   
10.
We consider autonomous systems with a nonlinear part depending on a parameter and study Hopf bifurcations at infinity. The nonlinear part consists of the nonlinear functional term and the Prandtl--Ishlinskii hysteresis term. The linear part of the system has a special form such that the close-loop system can be considered as a hysteresis perturbation of a quasilinear Hamiltonian system. The Hamiltonian system has a continuum of arbitrarily large cycles for each value of the parameter. We present sufficient conditions for the existence of bifurcation points for the non-Hamiltonian system with hysteresis. These bifurcation points are determined by simple characteristics of the hysteresis nonlinearity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号